Waves in a superlattice with arbitrary interlayer boundary thickness

Тип публикации: статья из журнала

Год издания: 2004

Идентификатор DOI: 10.1134/1.1841396

Аннотация: The transmittance D(omega), reflectance R(omega), and dispersion omega(k) are investigated for waves of various nature propagating through a one-dimensional superlattice (multilayer structure) with arbitrary thickness of the interlayer boundary. The dependences of the band gap widths Deltaomega(m) and their positions in the wave spectrum of the superlattice on the interlayer boundary thickness d and the band number m are calculated. Calculations are performed in terms of the modified coupled-mode theory (MCMT) using the frequency dependence of R(omega), as well as in the framework of perturbation theory using the function omega(k), which made it possible to estimate the accuracy of the MCMT method; the MCMT method is found to have a high accuracy in calculating the band gap widths and a much lower accuracy in determining the gap positions. It is shown that the m dependence of Deltaomega(m) for electromagnetic (or elastic) waves is different from that for spin waves. Furthermore, the widths of the band gaps with m = 1 and 2 are practically independent of d, whereas the widths of all gaps for m > 2 depend strongly on d. Experimental measurements of these dependences allow one to determine the superlattice interface thicknesses by using spectral methods. (C) 2004 MAIK "Nauka/Interperiodica".

Ссылки на полный текст

Издание

Журнал: PHYSICS OF THE SOLID STATE

Выпуск журнала: Vol. 46, Is. 12

Номера страниц: 2292-2300

ISSN журнала: 10637834

Место издания: NEW YORK

Издатель: MAIK NAUKA/INTERPERIODICA/SPRINGER

Авторы

  • Ignatchenko V.A. (Kirensky Institute of Physics,Siberian Division,Russian Academy of Sciences)
  • Laletin O.N. (Krasnoyarsk State University)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.