Hyperbolic variational inequalities

Тип публикации: статья из журнала

Год издания: 1991

Идентификатор DOI: 10.1016/0021-8928(91)90146-L

Аннотация: Results of a study of variational inequalities appearing in dynamic problems of the theory of elastic-ideally plastic Prandtl-Reuss flow are given. The concept of a generalized solution is formulated for the general-type inequality and is used to construct the complete system of relations for a strong discontinuity. A priori estimates are obtained which make it possible to prove the uniqueness and continuous dependence “in the small” on time of the solutions of the Cauchy problem and initial-boundary value problems with dissipative boundary conditions, as well as the estimates of the nearness of the solutions of the variational inequality and of the system of equations with a small parameter describing the elasto-viscoplastic deformation of the bodies. The problem of the propagation of plane waves in an elastoplastic half-space with initial stresses is used as an example to illustrate the difference between the discontinuous solutions with the Mises yield condition and with the Tresca-St Venant consition in the theory of flows.

Ссылки на полный текст

Издание

Журнал: Journal of Applied Mathematics and Mechanics

Выпуск журнала: Т.55, 6

Номера страниц: 927-935

ISSN журнала: 00218928

Издатель: Elsevier Science Publishing Company, Inc.

Авторы

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.