On low-dimensional models at NMR line shape analysis in nanomaterial systems

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: Applied Nanotechnology and Nanoscience International Conference (ANNIC); Rome, ITALY; Rome, ITALY

Год издания: 2018

Идентификатор DOI: 10.1088/1742-6596/987/1/012043

Аннотация: We present a model of localized spin dynamics at room temperature for the low-dimensional solid-state spin system, which contains small ensembles of magnetic nuclei (N ∼ 40). The standard spin Hamiltonian (XXZ model) is the sum of the Zeeman term in a strong external magnetic field and the magnetic dipole interaction secular term. The 19F spins in a single crystal of fluorapatite [Ca5(PO4)3F] have often been used to approximate a one-dimensional spin system. If the constant external field is parallel to the c axis, the 3D 19F system may be treated as a collection of many identical spin chains. When considering the longitudinal part of the secular term, we suggest that transverse component of a spin in a certain site rotates in a constant local magnetic field. This field changes if the spin jumps to another site. On return, this spin continues to rotate in the former field. Then we expand the density matrix in a set of eigenoperators of the Zeeman Hamiltonian. A system of coupled differential equations for the expansion coefficients then solved by straightforward numerical methods, and the fluorine NMR line shapes of fluorapatite for different chain lengths are calculated. © Published under licence by IOP Publishing Ltd.

Ссылки на полный текст


Журнал: Journal of Physics: Conference Series

Выпуск журнала: Vol. 987, Is. 1

Номера страниц: 12043

ISSN журнала: 17426588

Издатель: Institute of Physics Publishing


  • Kucherov M.M. (Siberian Fed Univ, Inst Space & Informat Technol, 26B Kirenskogo St, Krasnoyarsk 660074, Russia)
  • Falaleev O.V. (SB RAS, Krasnoyarsk Sci Ctr, 50 Akademgorodok, Krasnoyarsk 660036, Russia)

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.