Самоконфигурирующийся гибридный эволюционный алгоритм формирования нечетких классификаторов с активным обучением для несбалансированных данных

Перевод названия: Self-configuring hybrid evolutionary algorithm for fuzzy classifier design with active learning for unbalanced datasets

Тип публикации: статья из журнала

Год издания: 2014

Ключевые слова: fuzzy classification system, active learning, evolutionary algorithm, unbalanced data, self-configuration, нечеткие системы классификации, активное обучение, эволюционный алгоритм, самоконфигурация, несбалансированные данные

Аннотация: Описывается метод активного выбора обучающих примеров для самоконфигурирующегося гибридного эволюционного алгоритма формирования нечетких баз правил для задач классификации. Данный метод относится к методам отбора измерений, позволяющим не только снизить объем требуемых вычислительных ресурсов, но также улучшить качество получаемых классификаторов. Метод меняет вероятности выбора измерений для обучающей подвыборки в зависимости от того, насколько хорошо они классифицируются алгоритмом. Через некоторое число поколений выборка меняется и вероятности пересчитываются. Те измерения, которые не использовались ранее, и те, на которых алгоритм совершал ошибки, имели большую вероятность попасть в обучающую выборку. Вероятности выбора измерений рассчитывались с использованием процедуры, схожей с процедурой пропорциональной селекции в генетическом алгоритме. Описанная идея выбора обучающих примеров реализована для алгоритма построения нечетких классификаторов. Данный алгоритм использует комбинацию питсбургского и мичиганского подходов для построения баз правил с фиксированными термами, причем мичиганский подход используется вместе с оператором мутации. Размер баз правил не фиксирован и может изменяться в ходе работы алгоритма, а соответствующий номер класса и вес для каждого правила рассчитываются эвристически. Помимо этого в алгоритме применяется инициализация с использованием измерений выборки, для генерации более точных правил. В мичиганской части реализованы операторы добавления правил, удаления правил и замещения правил. При этом создание правил могло производиться как генетически, с использованием имеющихся в базе правил, так и эвристически, с использованием некорректно классифицированных объектов. Работоспособность алгоритма показана на ряде сложных задач классификации с множеством классов, в качестве мер качества классификации использовалась общая точность классификации и средняя точность по всем классам.

Ссылки на полный текст

Издание

Журнал: Вестник Сибирского государственного аэрокосмического университета им. академика М.Ф. Решетнева

Выпуск журнала: 5

Номера страниц: 128-135

ISSN журнала: 18169724

Место издания: Красноярск

Издатель: Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева

Авторы

  • Становов Владимир Вадимович (Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева)
  • Семенкина Ольга Эрнестовна (Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.