Reinforcement swarm intelligence in the global optimization method via neuro-fuzzy control of the search process | Научно-инновационный портал СФУ

Reinforcement swarm intelligence in the global optimization method via neuro-fuzzy control of the search process

Тип публикации: статья из журнала

Год издания: 2015

Идентификатор DOI: 10.3103/S1060992X15020083

Ключевые слова: Fuzzy logic, Global optimization, Multi-agent systems, Neural networks, Particle swarm optimization, Swarm intelligence, Artificial intelligence, Fuzzy control, Fuzzy inference, Fuzzy neural networks, Intelligent agents, Multi agent systems, Reinforcement, Stochastic systems, Computer experiment, Computer methods, Global optimization method, Modification methods, Neurofuzzy control, Test functions, Weighted averages, Particle swarm optimization (PSO)

Аннотация: The new modification method of the particle swarm optimization (PSO) is presented. Intensified adaptation properties of this stochastic computer method are based on the hybridization it with the weighted average coordinates method and reinforcement swarm intelligence via the neuro fuzzy control of the agent particles behavior. The results of computer experiments of the global optimization on the test functions of 2, 50, 100 variables with multiple extremes are presented. © Allerton Press, Inc., 2015.

Ссылки на полный текст

Издание

Журнал: Optical Memory and Neural Networks (Information Optics)

Выпуск журнала: Vol. 24, Is. 2

Номера страниц: 102-108

Авторы

  • Koshur V.D. (Institute of Space and Information Technology of the Siberian Federal University, Krasnoyarsk, Russian Federation)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.