Linear ODE Coefficients and Initial Condition Estimation with Co-operation of Biology Related Algorithms : научное издание | Научно-инновационный портал СФУ

Linear ODE Coefficients and Initial Condition Estimation with Co-operation of Biology Related Algorithms : научное издание

Тип публикации: статья из журнала

Год издания: 2016

Ключевые слова: bionic algorithms, biogeography, optimization, Initial condition estimation, parameters identification

Аннотация: The inverse mathematical modelling problem for a linear dynamic system is considered. The parameter and initial condition identification were reduced to an optimization problem. The proposed approach is based on the simultaneous estimation of linear differential equation coefficients and initial condition vector coordinates. The mathematical model is determined by the vector of equation parameters and the state coordinate of the model.The inverse mathematical modelling problem for a linear dynamic system is considered. The parameter and initial condition identification were reduced to an optimization problem. The proposed approach is based on the simultaneous estimation of linear differential equation coefficients and initial condition vector coordinates. The mathematical model is determined by the vector of equation parameters and the state coordinate of the model. The initial value problem solution is required to fit the sample data. The complexity and multimodality of criterion for the reduced problem leads to the implementation of an efficient optimization technique. The meta-heuristic optimization algorithm called Co-Operation of Biology Related Algorithms (COBRA) was used for this purpose. Its high efficiency had been proven in previous studies. Investigation results show that COBRA is a high-performance and reliable technique for current extremum problem class solving. The usefulness of the proposed approach is confirmed with the investigation results based on experiments made for different sample characteristics and different dynamic systems.

Ссылки на полный текст

Издание

Журнал: Lecture Notes in Computer Science

Выпуск журнала: Т. 9712

Номера страниц: 228-235

ISSN журнала: 03029743

Издатель: Springer-Verlag GmbH

Авторы

  • Ryzhikov I.S. (Siberian State Aerospace University)
  • Semenkin E.S. (Siberian State Aerospace University)
  • Akhmedova Sh.A. (Siberian State Aerospace University)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.