Adaptive robust control of oil and gas production objects | Научно-инновационный портал СФУ

Adaptive robust control of oil and gas production objects

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: International Conference on High-Tech and Innovations in Research and Manufacturing, HIRM 2019

Год издания: 2019

Идентификатор DOI: 10.1088/1742-6596/1353/1/012056

Аннотация: The article discusses a synthesis algorithm for objects with identification and parameter tuning. The algorithm is made on the basis of software and is tested for the formation of control effects in distillation column control circuit used in oil and gas processing production. It is shown that the control method suggested for a distillation column is not less effective in comparison with a control method that pre-tuned a preset proportional and integral differential controller. The suggested controller parameter tuning is not required and is made as the mentioned algorithm functions. Moreover, in the article it is possible to find the research results of testing in conditions of various level noise, control limitations, and controlled object parameter shift. © 2019 Published under licence by IOP Publishing Ltd.

Ссылки на полный текст

Издание

Журнал: Journal of Physics: Conference Series

Выпуск журнала: Vol. 1353, Is. 1

Номера страниц: 12056

ISSN журнала: 17426588

Издатель: Institute of Physics Publishing

Авторы

  • Bukhtoyarov V.V. (Siberian Federal University, 79 Svobodny Avenue, Krasnoyarsk, 660041, Russian Federation, Reshetnev Siberian State University of Science and Technology, 31 Krasnoyarsky Rabochy Avenue, Krasnoyarsk, 660037, Russian Federation)
  • Tynchenko V.S. (Siberian Federal University, 79 Svobodny Avenue, Krasnoyarsk, 660041, Russian Federation, Reshetnev Siberian State University of Science and Technology, 31 Krasnoyarsky Rabochy Avenue, Krasnoyarsk, 660037, Russian Federation)
  • Petrovsky E.A. (Siberian Federal University, 79 Svobodny Avenue, Krasnoyarsk, 660041, Russian Federation)
  • Zhukov V.G. (Siberian Federal University, 79 Svobodny Avenue, Krasnoyarsk, 660041, Russian Federation, Reshetnev Siberian State University of Science and Technology, 31 Krasnoyarsky Rabochy Avenue, Krasnoyarsk, 660037, Russian Federation)
  • Kukartsev V.V. (Siberian Federal University, 79 Svobodny Avenue, Krasnoyarsk, 660041, Russian Federation, Reshetnev Siberian State University of Science and Technology, 31 Krasnoyarsky Rabochy Avenue, Krasnoyarsk, 660037, Russian Federation)
  • Bashmur K.A. (Siberian Federal University, 79 Svobodny Avenue, Krasnoyarsk, 660041, Russian Federation)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.