Polymer Films of Poly-3-hydroxybutyrate Synthesized by Cupriavidus necator from Different Carbon Sources : научное издание | Научно-инновационный портал СФУ

Polymer Films of Poly-3-hydroxybutyrate Synthesized by Cupriavidus necator from Different Carbon Sources : научное издание

Тип публикации: статья из журнала

Год издания: 2020

Идентификатор DOI: 10.1007/s10924-020-01924-3

Ключевые слова: degradable p(3hb), various carbon substrates, films, structure, properties, nih 3t3 fibroblasts

Аннотация: Films were prepared from 2% solutions of biodegradable poly-3-hydroxybutyrate [P(3HB)] and investigated. The polymer was synthesized by theCupriavidus necatorB-10646 bacterium cultivated using various carbon sources (glucose and glycerol of different degrees of purity, containing 0.3 to 17.93% impurities). Glycerol as the substrate influenced molecular-weight properties and crystallinity of the polymer without affecting its temperature characteristics. The P(3HB) specimens synthesized from glycerol had reduced M-w(300-400 kDa) and degree of crystallinity (50-55%) compared to the specimens synthesized from glucose (860 kDa and 76%, respectively). The low-crystallinity P(3HB) specimens, regardless of the degree of purity of glycerol, produced a beneficial effect on the properties of polymer films, which had a better developed folded surface and increased hydrophilicity. The values of the highest roughness (R-a) of the films synthesized from glycerol were 1.8 to 4.0 times lower and the water angles 1.4-1.6 times smaller compared to the films synthesized from glucose (71.75 nm and 87.4 degrees, respectively). Those films performed better as cell scaffolds: the number of viable NIH fibroblasts was 1.7-1.9 times higher than on polystyrene (control) or films of P(3HB) synthesized from glucose. Films were prepared from 2% solutions of biodegradable poly-3-hydroxybutyrate [P(3HB)] and investigated. The polymer was synthesized by the Cupriavidus necator B-10646 bacterium cultivated using various carbon sources (glucose and glycerol of different degrees of purity, containing 0.3 to 17.93% impurities). Glycerol as the substrate influenced molecular-weight properties and crystallinity of the polymer without affecting its temperature characteristics. The P(3HB) specimens synthesized from glycerol had reduced Mw (300–400 kDa) and degree of crystallinity (50–55%) compared to the specimens synthesized from glucose (860 kDa and 76%, respectively). The low-crystallinity P(3HB) specimens, regardless of the degree of purity of glycerol, produced a beneficial effect on the properties of polymer films, which had a better developed folded surface and increased hydrophilicity. The values of the highest roughness (Ra) of the films synthesized from glycerol were 1.8 to 4.0 times lower and the water angles 1.4–1.6 times smaller compared to the films synthesized from glucose (71.75 nm and 87.4°, respectively). Those films performed better as cell scaffolds: the number of viable NIH fibroblasts was 1.7–1.9 times higher than on polystyrene (control) or films of P(3HB) synthesized from glucose. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.

Ссылки на полный текст

Издание

Журнал: JOURNAL OF POLYMERS AND THE ENVIRONMENT

Выпуск журнала: Vol. 29, Is. 3

ISSN журнала: 15662543

Место издания: NEW YORK

Издатель: SPRINGER

Авторы

  • Shishatskaya Ekaterina (Siberian Fed Univ, 79 Svobodnyi Av, Krasnoyarsk 660041, Russia; RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, Inst Biophys, Krasnoyarsk, Russia)
  • Nemtsev Ivan (RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, LV Kirenskii Inst Phys, Krasnoyarsk, Russia)
  • Lukyanenko Anna (RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, LV Kirenskii Inst Phys, Krasnoyarsk, Russia)
  • Vasiliev Alexander (Siberian Fed Univ, 79 Svobodnyi Av, Krasnoyarsk 660041, Russia; RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, LV Kirenskii Inst Phys, Krasnoyarsk, Russia)
  • Kiselev Evgeniy (Siberian Fed Univ, 79 Svobodnyi Av, Krasnoyarsk 660041, Russia; RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, Inst Biophys, Krasnoyarsk, Russia)
  • Sukovatyi Aleksey (Siberian Fed Univ, 79 Svobodnyi Av, Krasnoyarsk 660041, Russia; RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, Inst Biophys, Krasnoyarsk, Russia)
  • Volova Tatiana (Siberian Fed Univ, 79 Svobodnyi Av, Krasnoyarsk 660041, Russia; RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, Inst Biophys, Krasnoyarsk, Russia)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.