Microwave-employed sol–gel synthesis of scheelite-type microcrystalline aggd(Moo4)2:Yb3+/ho3+ upconversion yellow phosphors and their spectroscopic properties | Научно-инновационный портал СФУ

Microwave-employed sol–gel synthesis of scheelite-type microcrystalline aggd(Moo4)2:Yb3+/ho3+ upconversion yellow phosphors and their spectroscopic properties

Тип публикации: статья из журнала

Год издания: 2020

Идентификатор DOI: 10.3390/cryst10111000

Ключевые слова: double molybdate, microwave sol–gel, spectroscopic properties, upconversion, yellow phosphors

Аннотация: AgGd(MoO4)2:Ho3+/Yb3+ double molybdates with five concentrations of Ho3+ and Yb3+ were synthesized by the microwave employed sol–gel based process (MES), and the crystal structure variation, concentration effects, and spectroscopic characteristics were investigated. The crystal structures of AgGd1-x-yHoxYby(MoO4)2 (x = 0, 0.05; y = 0, 0.35, 0.4, 0.45, 0.5)at room temperature were determined in space group I41 /a by Rietveld analysis. Pure AgGd(MoO4)2 has a scheelite-type structure with mixed occupations of (Ag,Gd) sites and cell parameters a = 5.24782 (11) and c = 11.5107 (3) Å, V = 317.002 (17) Å3, Z = 4. In doped samples, the sites are occupied by a mixture of (Ag,Gd,Ho,Yb) ions, which provides a linear cell volume decrease with the doping level increase. Under the excitation at 980 nm, AGM:0.05Ho,yYb phosphors exhibited a yellowish green emission composed of red and green emission bands according to the strong transitions5F5 →5I8 and5S2/5F4 →5I8 of Ho3+ ions. The evaluated photoluminescence and Raman spectroscopic results were discussed in detail. The upconversion intensity behavior dependent on the Yb/Ho ratio is explained in terms of the optimal number of Yb3+ ions at the characteristic energy transfer distance around the Ho3+ ion. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Ссылки на полный текст

Издание

Журнал: Crystals

Выпуск журнала: Vol. 10, Is. 11

Номера страниц: 1-14

ISSN журнала: 20734352

Издатель: MDPI AG

Авторы

  • Lim C.S. (Department of Aerospace Advanced Materials Engineering, Hanseo University, Seosan, 31962, South Korea)
  • Aleksandrovsky A. (Laboratory of Coherent Optics, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation, Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation)
  • Atuchin V. (Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk, 630090, Russian Federation, Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk, 630090, Russian Federation, Research and Development Department, Kemerovo State University, Kemerovo, 650000, Russian Federation)
  • Molokeev M. (Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation, Institute of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation, Department of Physics, Far Eastern State Transport University, Khabarovsk, 680021, Russian Federation)
  • Oreshonkov A. (Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation, School of Engineering and Construction, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.