Improved random adaptive grouping approach for solving unconstrained LSGO problems | Научно-инновационный портал СФУ

Improved random adaptive grouping approach for solving unconstrained LSGO problems

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: 2nd International Scientific Conference on Metrological Support of Innovative Technologies, ICMSIT 2020

Год издания: 2020

Идентификатор DOI: 10.1088/1742-6596/1515/3/032076

Аннотация: Large-scale global optimization (LSGO) problems are emergent in many domains of applied sciences. LSGO is a hard challenge for the majority of state-of-the-art optimization methods. Evolution algorithms (EAs) combined with Cooperative Coevolution (CC) are able to perform well when solving many real-world LSGO problems. The grouping of variables at the problem decomposition stage has a significant impact on the performance of the CC approach. This study proposes an improvement of the previously developed random adaptive grouping (RAG) approach for CC. The new method is titled as RAG2, and the whole optimization algorithm, based on RAG2, is called CC-SHADE-RAG2. The influence of the choice of the population size and the number of subcomponents on the algorithm performance have been investigated using the IEEE LSGO CEC'2013 benchmark. The set of test problems in the benchmark contains fifteen functions with dimensionality equal to one thousand. We have also compared the performance of the novel algorithm with some EAs, which are applied for solving LSGO problems. © 2020 Published under licence by IOP Publishing Ltd.

Ссылки на полный текст

Издание

Журнал: Journal of Physics: Conference Series

Выпуск журнала: Vol. 1515, Is. 3

ISSN журнала: 17426588

Издатель: Institute of Physics Publishing32076

Авторы

  • Vakhnin A. (Reshetnev Siberian State University of Science and Technology, Krasnoyarsky Rabochy Av. 31, Krasnoyarsk, 660037, Russian Federation)
  • Sopov E. (Reshetnev Siberian State University of Science and Technology, Krasnoyarsky Rabochy Av. 31, Krasnoyarsk, 660037, Russian Federation, Siberian Federal University, Svobodny Av. 79, Krasnoyarsk, 660041, Russian Federation)
  • Panfilov I. (Reshetnev Siberian State University of Science and Technology, Krasnoyarsky Rabochy Av. 31, Krasnoyarsk, 660037, Russian Federation, Siberian Federal University, Svobodny Av. 79, Krasnoyarsk, 660041, Russian Federation)

Вхождение в базы данных

  • Scopus (цитирований 1)
  • Ядро РИНЦ (eLIBRARY.RU) (цитирований 1)

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.