Permanents as formulas of summation over an algebra with a unique n-ary operation : научное издание | Научно-инновационный портал СФУ

Permanents as formulas of summation over an algebra with a unique n-ary operation : научное издание

Тип публикации: статья из журнала

Год издания: 2018

Идентификатор DOI: 10.17516/1997-1397-2018-11-6-796-799

Ключевые слова: permanents, noncommutative and multioperator algebras, the polarization theorem, polynomial identities, Decision making, Environmental management, Thermoelectric power plants, Environmental Monitoring, Impact on the environment, Measurement accuracy, Multi-version, Problem solutions, Real time, Simulation environment, Thermal power plants, Ecology

Аннотация: We give a new general definition for permanents over an algebra with a unique n-ary operation and study their properties. In particular, it is shown that properties of these permanents coincide with the basic properties of the classical Binet-Cauchy perma The article deals with the problem of environmental monitoring execution in case of thermal power plants impact on the environment. The regulating documents in compliance with which this problem is solved have been provided. The problem of obtaining valid The article deals with the problem of environmental monitoring execution in case of thermal power plants impact on the environment. The regulating documents in compliance with which this problem is solved have been provided. The problem of obtaining valid

Ссылки на полный текст

Издание

Журнал: JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS

Выпуск журнала: Vol. 11, Is. 6

Номера страниц: 796-799

ISSN журнала: 19971397

Место издания: KRASNOYARSK

Издатель: SIBERIAN FEDERAL UNIV

Авторы

  • Egorychev Georgy P. (Siberian Fed Univ, Inst Math & Comp Sci, Svobodny 79, Krasnoyarsk 660041, Russia)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.