Renewal Function under Prefailure Lives Distributed as a Mixture of n Exponential Distributions: Obtaining the Parameters of Mixtures Using the Method of Moments | Научно-инновационный портал СФУ

Renewal Function under Prefailure Lives Distributed as a Mixture of n Exponential Distributions: Obtaining the Parameters of Mixtures Using the Method of Moments

Тип публикации: статья из журнала

Год издания: 2019

Идентификатор DOI: 10.3103/S105261881903004X

Ключевые слова: method of moments, mixture of distribution functions, renewal function, renewal process, Carpet of additive subgroups, Carpet subgroup, Chevalley group, Irreducible carpet, Root system

Аннотация: This paper deals with the problems of the theory of reliability of technical systems for the case when the prefailure lives of the restored (replaced) elements are distributed as a mixture of distributions. For a simple renewal process, when the prefailur This article discusses the subgroups of Chevalley groups, defined by carpets — the sets of additive subgroups of the main definition ring. Such subgroups are called carpet subgroups and they are generated by root elements with coefficients from the corres This paper deals with the problems of the theory of reliability of technical systems for the case when the prefailure lives of the restored (replaced) elements are distributed as a mixture of distributions. For a simple renewal process, when the prefailur

Ссылки на полный текст

Издание

Журнал: Journal of Machinery Manufacture and Reliability

Выпуск журнала: Vol. 48, Is. 3

Номера страниц: 275-282

ISSN журнала: 10526188

Издатель: Pleiades Publishing

Авторы

  • Fedotova I.M. (Siberian Fed Univ, Inst Space & Informat Technol, Krasnoyarsk, Russia)
  • Vaynshtein V.I. (Siberian Fed Univ, Inst Space & Informat Technol, Krasnoyarsk, Russia)
  • Tsibul'skii G.M. (Siberian Fed Univ, Inst Space & Informat Technol, Krasnoyarsk, Russia)
  • Vaynshtein Yu. V. (Siberian Fed Univ, Inst Space & Informat Technol, Krasnoyarsk, Russia)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.