Evolutionary algorithm for automated formation of decision-making models for predicting the safety of opioid therapy : доклад, тезисы доклада | Научно-инновационный портал СФУ

Evolutionary algorithm for automated formation of decision-making models for predicting the safety of opioid therapy : доклад, тезисы доклада

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: III International Conference on Advanced Technologies in Aerospace, Mechanical and Automation Engineering - MIST: Aerospace-III-2020; 9-th International Workshop on Mathematical Models and their Applications (IWMMA-2020); Krasnoyarsk; Krasnoyarsk

Год издания: 2021

Идентификатор DOI: 10.1088/1757-899X/1047/1/012126

Аннотация: In this paper, an evolutionary algorithm for solving the problem of predicting the safety of opioid therapy for patients with pancreatic cancer is proposed. Opioid analgesics such as fentanyl and morphine are used as a therapy for pain syndromes. Using the patient database, based on the results of the therapy applied to them, it is determined whether there is a correlation between the outcome and the combination of input data taken into account. To find a set of informative features, it is proposed to use the genetic algorithm for multi-criterion optimization, in which two criteria are reduced to one generalized criterion using the method of "additive convolution". The formed combination of the selected input features, which affects the outcome, is used to build a decision support model and to evaluate it afterwards.

Ссылки на полный текст

Издание

Журнал: IOP Conference Series: Materials Science and Engineering

Выпуск журнала: 1047

Номера страниц: 12126

Место издания: Krasnoyarsk, Russian Federation

Издатель: IOP Publishing Ltd

Авторы

  • Lipinskiy L V (Reshetnev Siberian State University of Science and Technology)
  • Melnikova O D (Reshetnev Siberian State University of Science and Technology)
  • Polyakova A S (Reshetnev Siberian State University of Science and Technology)
  • Evseeva S A (Reshetnev Siberian State University of Science and Technology)
  • Bobrova O P (Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University)
  • Shnayder N A (Bekhterev National Medical Research Center of Psychiatry and Neurology, Ministry of Health of Russia)
  • Zyryanov S K (Peoples' Friendship University of Russia)
  • Petrova M M (Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University)
  • Dychno Y A (Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University)
  • Zobova S N (Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University)
  • Bobrov A V (Reshetnev Siberian State University of Science and Technology)
  • Krasnoyarsk Science and Technology City Hall.

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.