On a restart metaheuristic for real-valued multi-objective evolutionary algorithms : доклад, тезисы доклада | Научно-инновационный портал СФУ

On a restart metaheuristic for real-valued multi-objective evolutionary algorithms : доклад, тезисы доклада

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: 2019 Genetic and Evolutionary Computation Conference, GECCO 2019; Prague; Prague

Год издания: 2019

Ключевые слова: metaheuristic, multi-objective optimization, performance improvement, Restart operator

Аннотация: Incorporating a restart operator into a multi-objective evolutionary algorithm (MOEA) yields its performance improvement. Restarting an algorithm aims at preventing stagnation and reaching solutions uniformly distributed along the whole Pareto front. The presented experimental results for two MOEAs with the restart operator demonstrate vast potential of this metaheuristic. The use of the restart operator is limited by the necessity to adjust its key parameters for the problem solved.

Ссылки на полный текст

Издание

Журнал: GECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion

Номера страниц: 197-198

Авторы

  • Brester C. (Reshetnev Siberian State University of Science and Technology)
  • Ryzhikov I. (Reshetnev Siberian State University of Science and Technology)
  • Kolehmainen M. (University of Eastern Finland)
  • Semenkin E. (Reshetnev Siberian State University of Science and Technology)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.