Wavelet Analysis of Cardiac Electrical Activity Signals | Научно-инновационный портал СФУ

Wavelet Analysis of Cardiac Electrical Activity Signals

Тип публикации: статья из журнала

Год издания: 2018

Идентификатор DOI: 10.1007/s10527-018-9796-x

Аннотация: To solve important problems of cardiovascular monitoring, effective algorithms for computer processing of electrocardiogram signals (ECS) should be developed on the basis of nonlinear dynamic analysis. ECS can be represented as electric excitation of the conducting nerve network of the heart (CNNH) in the form of solitons of different sizes, taking into account their polarization along the main CNNH branches. Detailed information on the electrical activity in all parts of the four-chamber heart is contained in the self-similar fractal scale-invariant CNNH structure. With the help of wavelet transform, it is possible to represent the structure of the process of excitation of CNNH segments as a system of local extrema of the wavelet diagram of ECS. The wavelet spectrum of ECS has a fractal structure in the form of self-similar waves with scaling 1/f. Each of these waves reflects the excitation of the corresponding CNNH segment. Wavelet representation of the ECS can be used as a tool for detecting various cardiovascular diseases by visualizing skeleton functions of the ECS wavelet transform. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.

Ссылки на полный текст


Журнал: Biomedical Engineering

Выпуск журнала: Vol. 52, Is. 2

Номера страниц: 120-124

ISSN журнала: 00063398

Издатель: Springer New York LLC


  • Aldonin G.M. (Siberian Federal University, Krasnoyarsk, Russian Federation)
  • Soldatov A.V. (Siberian Federal University, Krasnoyarsk, Russian Federation)
  • Cherepanov V.V. (Siberian Federal University, Krasnoyarsk, Russian Federation)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.