On island model performance for cooperative real-valued multi-objective genetic algorithms : научное издание | Научно-инновационный портал СФУ

On island model performance for cooperative real-valued multi-objective genetic algorithms : научное издание

Тип публикации: статья из журнала

Год издания: 2018

Идентификатор DOI: 10.1007/978-3-319-93815-8_21

Ключевые слова: Island model cooperation, multi-objective optimization, Real-valued genetic algorithm

Аннотация: Solving a multi-objective optimization problem results in a Pareto front approximation, and it differs from single-objective optimization, requiring specific search strategies. These strategies, mostly fitness assignment, are designed to find a set of non-dominated solutions, but different approaches use various schemes to achieve this goal. In many cases, cooperative algorithms such as island model-based algorithms outperform each particular algorithm included in this cooperation. However, we should note that there are some control parameters of the islands’ interaction and, in this paper, we investigate how they affect the performance of the cooperative algorithm. We consider the influence of a migration set size and its interval, the number of islands and two types of cooperation: homogeneous or heterogeneous. In this study, we use the real-valued evolutionary algorithms SPEA2, NSGA-II, and PICEA-g as islands in the cooperation. The performance of the presented algorithms is compared with the performance of other approaches on a set of benchmark multi-objective optimization problems.

Ссылки на полный текст

Издание

Журнал: Lecture Notes in Computer Science (см. в книгах)

Выпуск журнала: Т.10941 LNCS

Номера страниц: 210-219

ISSN журнала: 03029743

Издатель: Springer-Verlag GmbH

Авторы

  • Brester C. (University of Eastern Finland)
  • Ryzhikov I. (University of Eastern Finland)
  • Semenkin E. (Siberian State University of Science and Technology)
  • Kolehmainen M. (University of Eastern Finland)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.