NON-PARAMETRIC ALGORITHMS OF RECONSTRUCTION OF MUTUALLY AMBIGUOUS FUNCTIONS FROM OBSERVATIONS : научное издание | Научно-инновационный портал СФУ

NON-PARAMETRIC ALGORITHMS OF RECONSTRUCTION OF MUTUALLY AMBIGUOUS FUNCTIONS FROM OBSERVATIONS : научное издание

Перевод названия: НЕПАРАМЕТРИЧЕСКИЕ АЛГОРИТМЫ ВОССТАНОВЛЕНИЯ ВЗАИМНО НЕОДНОЗНАЧНЫХ ФУНКЦИЙ ПО НАБЛЮДЕНИЯМ

Тип публикации: статья из журнала

Год издания: 2017

Ключевые слова: априорная информация, непараметрическая модель, взаимно неоднозначные характери- стики, непараметрические оценки, aprior information, nonparametric model, mutually ambiguous characteristics, nonparametric estimates

Аннотация: We consider the task of reconstruction of the regression function from observations with errors. Under parametric uncertainty conditions this problem is solved in the following sequence: first the type of regression function with accu- racy to parameters is set, then the next stage is the estimation of these parameters based on training sample elements. The main problem that arises is choosing a parametric structure, i. e. the choice of parameters with an accuracy to the vector of parameters. At the same time more or less inaccuracy can be allowed, descriptions of many variables func- tions with accuracy to parameters cause particular difficulties. Another known way of solving such problems, which is the nonparametric estimation of regression function from observations, in this case the stage of choosing a parametric equation of the regression function is missing. A number of publications is devoted to this area including monographs where the results are in most cases related to the asymptotic properties of the regression function. The article considers the task of reconstruction of mutually ambiguous functions of many arguments from observa- tions with random errors in the conditions of nonparametric uncertainty. This problem has been insufficiently studied, although it has a significant importance in the identification and control of objects of a Wiener and Hammerstein class. The control theory widely uses already known mutually ambiguous specifications that describe the work of items with a loop of hysteresis, backlashes and others. Some modifications of nonparametric estimates of mutually ambiguous fea- tures including multidimensional are given. A series of computing experiments have been conducted where for simplic- ity reasons the simpliest mutually ambiguous curves were taken, parametric structure of these curves for the algorithms was unknown, only observation was known. Numerical studies covered two cases: different sample sizes and various disturbances affecting the studied processes. The reconstruction of mutually ambiguous dependency plays an important role in the development of robots and various robotic systems moving on in an undefined or unknown terrain. As sepa- rate blocks the considered algorithms can be useful in devices that are used in the aerospace industry. Рассматривается задача восстановления функции регрессии по наблюдениям с ошибками. В условиях пара- метрической неопределенности эта задача решается в следующей последовательности: сначала задается вид функции регрессии с точностью до параметров, на следующем этапе осуществляется оценка этих парамет- ров на основе элементов обучающей выборки. Основная проблема, которая здесь возникает, состоит в выборе параметрической структуры, т. е. в выборе параметров с точностью до вектора параметров. При этом может быть допущена большая или меньшая неточность, описание функций многих переменных с точностью до параметров вызывает определенные трудности. Известен другой путь решения подобной задачи, который состоит в непараметрическом оценивании функции регрессии по наблюдениям, в этом случае этап выбора параметрического уравнения функции регрессии отсутствует. Этому направлению посвящено большое коли- чество публикаций, включая монографии, где в большинстве случаев излагаются результаты, связанные с асимптотическими свойствами непараметрических оценок функции регрессии. Рассматривается задача восстановления взаимно неоднозначной функции многих аргументов по наблюде- ниям со случайными ошибками в условиях непараметрической неопределенности. Данная задача исследована недостаточно, хотя и имеет существенное значение при идентификации и управлении объектами класса Винера и Гаммерштейна. Теория управления широко использует уже известные взаимно неоднозначные характеристики, которые описывают работу элементов с петлей гистерезиса, люфтов и др. Приведены не- которые модификации непараметрических оценок взаимно неоднозначных функций, в том числе многомерных. Также проведена серия вычислительных экспериментов, в которых из соображения простоты были взяты наиболее простые взаимно неоднозначные кривые, параметрическая структура этих кривых для алгоритмов была неизвестна, а известно только наблюдение. Численные исследования охватывали два случая: различные объемы выборки и различные уровни помех, действующих на исследуемые процессы. Восстановление взаимно неоднозначной зависимости играет важную роль при разработке роботов и различных робототехнических систем, движущихся по заранее не определенному или неизвестному рельефу. В качестве отдельных блоков рассматриваемые алгоритмы могут быть полезны в устройствах, используемых в аэрокосмической отрасли.

Ссылки на полный текст

Издание

Журнал: Сибирский журнал науки и технологий

Выпуск журнала: Т. 18, 3

Номера страниц: 510-519

ISSN журнала: 25876066

Место издания: Красноярск

Издатель: Федеральное государственное бюджетное образовательное учреждение высшего образования Сибирский государственный университет науки и технологий имени академика М.Ф. Решетнева

Авторы

  • Korneeva A.A. (Siberian Federal University, Institute of space and information technologies)
  • Chernova S.S. (Siberian Federal University, Institute of space and information technologies)
  • Shishkina A.V. (Siberian Federal University, Institute of space and information technologies)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.