Directional splines for economic analytics | Научно-инновационный портал СФУ

Directional splines for economic analytics

Тип публикации: статья из журнала

Год издания: 2020

Идентификатор DOI: 10.24818/18423264/

Ключевые слова: akima spline, b-spline, catmull-rom spline, directional spline, spline optimization

Аннотация: Paper presents the method of constructing a cubic spline for a set of points on a plane. It has been made comparison of the spline with Schoenberg B-spline and Akima and Kathmul-Rom splines. It is shown that for unequally spaced points, at which the disadvantages of the named splines are usually manifested, in comparison with the B-spline, it gives significantly lower oscillations. The spline with such a set of points is practically deprived of the strong kinks that are characteristic of Akima splines. It does not give loops and oscillations, which are a characteristic disadvantage of parametric splines, in particular, Hermitian ones, which includes the Kathmull-Rom spline. The optimization method of spline guide coefficient is proposed, the purpose of which is to minimize discontinuities of the second derivative function at its intermediate points. A fourth-order spline is also proposed, which is deprived of kinks and has lower emissions compared to the Schoenberg spline. The proposed method for blunting sharp peak curves can be applied to all types of splines. © 2020, Bucharest University of Economic Studies. All rights reserved.

Ссылки на полный текст


Журнал: Economic Computation and Economic Cybernetics Studies and Research

Выпуск журнала: Vol. 54, Is. 3

Номера страниц: 129-144

ISSN журнала: 0424267X


  • Kodnyanko Vladimir

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.