Fuzzy rule-based classifier design with co-operative bionic algorithm for opinion mining problems : доклад, тезисы доклада | Научно-инновационный портал СФУ

Fuzzy rule-based classifier design with co-operative bionic algorithm for opinion mining problems : доклад, тезисы доклада

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: International Conference on Informatics in Control, Automation and Robotics, ICINCO 2016; Lisbon; Lisbon

Год издания: 2016

Ключевые слова: bionic algorithms, Fuzzy rule-based classifiers, opinion mining, optimization

Аннотация: Automatically generated fuzzy rule-based classifiers for opinion mining are presented in this paper. A collective nature-inspired self-tuning meta-heuristic for solving unconstrained real-valued optimization problems called Co-Operation of Biology Related Algorithms and its modification with a biogeography migration operator for binary-parameter optimization problems were used for the design of classifiers. The basic idea consists in the representation of a fuzzy classifier rule base as a binary string and the parameters of the membership functions of the fuzzy classifier as a string of real-valued variables. Three opinion mining problems from the DEFT'07 competition were solved using the proposed classifiers. Experiments showed that the fuzzy classifiers developed in this way outperform many alternative methods at the given problems. The workability and usefulness of the proposed algorithm are confirmed.

Ссылки на полный текст

Издание

Журнал: ICINCO 2016 - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics

Выпуск журнала: 1

Номера страниц: 68-74

Авторы

  • Akhmedova S. (Department of System Analysis and Operations Research,Siberian State Aerospace University)
  • Semenkin E. (Department of System Analysis and Operations Research,Siberian State Aerospace University)
  • Stanovov V. (Department of System Analysis and Operations Research,Siberian State Aerospace University)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.