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Flow at a backward-facing step feature (1:5 expansion ratio) in a microchannel has been studied using
microparticle image velocimetry. The onset and development of a recirculation flow was studied as a function of flow
rate. The onset of recirculation was initiated at flow rates that correspond to Reynolds numbers, Re > 95. The
dimensions are such that recirculation flow has a three-dimensional structure and is expected to vary with the depth
coordinate. Because of volume illumination, most microparticle-image-velocimetry measurements provide two-
dimensional averaged flow profiles. Flow at the backward-facing step offers the opportunity to investigate the ability
of resolving the depth dependency by conventional microparticle image velocimetry in relevance to two parameters:
variation of the focus plane depth z* and using variable time intervals for particle-image-velocimetry image pairs Az.
The ensemble cross-correlation algorithm was found to be insensitive to the variation of z* for low magnification (4x)
but was able to resolve the parabolic nature of flow across the depth of the channel, when high magnification objective
lenses were used (20x). For a given flow rate and constant z°, the variation of Af resulted in quantitatively and
qualitatively different flow patterns, suggesting that Azis an indirect means of resolving the depth as the correlation
algorithm locks onto a flow plane with particles moving at a speed that can be resolved with the given process

parameters and time interval.

Nomenclature
A = channel cross-sectional area. gm?
D, = hydraulic diameter, jem; 4A/P
H = channel height, pm
N = number of image pairs in particle-image-velocity
correlation
P = channel perimeter. L/ min
Q@ = flowrate. pL/ min
Re = Reynolds number; pUD,; /1t
w = channel width, um
z* = normalized focus plane depth: z/H
Ar = time interval between particle-image-velocity image pairs
® = correlation function

I. Introduction
ICROPARTICLE image velocimetry (4PIV) is & useful wol
in studying small-scale flow and related phenomena in
microfluidics. In comparison with conventional particle image
velocimetry (PIV), the pPIV technique requires that the tracer
particles be in the size range of the wavelength of the illumination

light. The Brownian motion of tracing particles can be a source of

error in low rates of flow. The illumination of the flow is not in a two-
dimensional (2-D) plane, as in conventional PIV, but in an illumi-
nation volume. Hence. out-of-focus emissions from particles below
and above the focus plane increase the noise-to-signal ratio. In
addition to visualizing the onset and development of recirculation in
microchannel flows, the purpose of this study is to investigate the
effect of variables affecting pPIV in relevance to volume
illumination: variation of the focus plane depth and time intervals
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between the PIV image pairs in a hackward-facing step. An ensemble
cross-correlation scheme was used to derive the flowfield.

In conventional PIV, the thickness of the illumination light sheet is
much smaller than the characteristic dimensions of the flow, so that
the flow can be analyzed layer by layer. In ¢PIV. however, all the
particles in the flowficld are illuminated due to limited optical access:
the intensity of light scattered by the tracer particles varies depending
on their location from the plane of focus. The epifluorescence
technique is implemented in #PIV, since the limited optical access
does not allow illumination and collection of the excitation and
reemission light from two separate paths. Fluorescent dyes offer the
possibility of using only one optical pathway. Excitation light froma
neodymium-doped yttrium aluminum gamet (ND:YAG) laser with a
fixed wavelength is guided to the desired location of the flow:
fluorescent dyes absorb this light, moving into an excitation mode.
Upon releasing the absorbed energy. they reemit light at a higher
wavelength (part of the energy gets dissipated). The reemission light
can be filtered out using a dichroic mirror that is transparent to the
wavelength used for excitation but reflective to the reemission
wavelength. The reemission light is guided to the charge-coupled
device (CCD) camera, where the images are recorded in pairs and
eventually transmitted to a computer for further processing. The fact
that all particles in the field of view are illuminated can be & major
problem. The light from particles off the plane of focus forms a
background noise (glow) that makes it difficult to distinguish
between light scattered from in-focus particles and that from the off-
focus particles. In most cases, information regarding the depthwise
behavior of the flow is lost, and a 2-D average field is derived [T]. Two
approaches are possible:

1) Choose the depth of field to be larger than the thickness of the
flow. The depth can further be resolved by filtering techniques bused
on the intensity of light [2].

2) Choose the depth of focus to be significantly narrower than the
depth of flow; in this sense, only a narrow slice of the flow would be in
focus, und the light from seeding particles above or below the plane
will be considered as noise [3].

Olsen and Adrian [3.3] introduced the concept of particle visibility
for £PIV measurements while addressing this issue. Particles were
considered to be visible if only their peak intensity in the recorded
images rose significantly above the background glow. Particle
visibility increases by decreasing the f number of the optical system;
the depth of field increases by increasing the f number. This means
that imaves taken with a low £ number will tend to have a limited



