ОЦЕНКА КОЛИЧЕСТВА 12-АПЕРИОДИЧЕСКИХ СЛОВ

Перевод названия: ESTIMATING THE NUMBER OF 12-APERIODIC WORDS

Тип публикации: статья из журнала

Год издания: 2017

Ключевые слова: группа, периодическое слово, апериодическое слово, алфавит, локальная конечность, group, Periodic word, aperiodic word, alphabet, local finiteness

Аннотация: В 1902 г. У. Бернсайд поставил вопрос о локальной конечности групп, все элементы которых имеют конечные порядки. Первый отрицательный ответ был получен лишь спустя 63 года Е. С. Голодом. Позднее С. В. Алешиным, Р. И. Григорчуком, В. И. Сущанским была предложена целая серия отрицательных примеров. Конечность свободной бернсайдовской группы периода n установлена в разное время для n = 2, n = 3 (У. Бернсайд), n = 4 (У. Бернсайд, И. Н. Санов), n = 6 (М. Холл). Доказательство бесконечности этой группы для нечетных показателей n ? 4381 было дано в работе П. С. Новикова - С. И. Адяна (1967), а для нечетных n ? 665 - в книге С. И. Адяна (1975). Более наглядный вариант доказательства для нечетных n > 1010 был предложен А. Ю. Ольшанским (1989). Для n = 12 ответ до сих пор неизвестен. А. С. Мамонтовым установлена локальная конечность группы периода 12 без элементов порядка 12. Этот результат обобщает теоремы И. Н. Санова и М. Холла. Д. В. Лыткина, В. Д. Мазуров и А. С. Мамонтов доказали, что группа периода 12, в которой порядок произведения любых двух элементов порядка два не превосходит числа 4, локально конечна. Эта теорема обобщила теорему И. Н. Санова, по которой группа периода 12 без элементов порядка 6 локально конечна.В связи с этими результатами рассматривается множество 12-апериодических слов. Под l-апериодическим словом понимают слово Х, если в нем нет непустых подслов вида Yl. В монографии С. И. Адяна (1975) приведено доказательство С. Е. Аршона (1937) того, что в алфавите из двух букв существует бесконечное множество сколь угодно длинных 3-апериодических слов. В монографии А. Ю. Ольшанского (1989) доказана теорема о бесконечности множества 6-апериодических слов и получена оценка снизу количества таких слов любой данной длины. Наша задача - получить оценку для функции количества 12-апериодических слов длины n. Результаты могут найти применение при кодировании информации, иcпользующейся в сеансах космической связи.

Ссылки на полный текст

Издание

Журнал: Вестник Сибирского государственного аэрокосмического университета им. академика М.Ф. Решетнева

Выпуск журнала: Т.18, 1

Номера страниц: 93-96

ISSN журнала: 18169724

Место издания: Красноярск

Издатель: Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева

Авторы

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.