The Semi-Lagrangian Approximation in the Finite Element Method for the Navier-Stokes Equations

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: International Conference on Application of Mathematics in Technical and Natural Sciences (AMiTaNS); Albena, BULGARIA; Albena, BULGARIA

Год издания: 2015

Идентификатор DOI: 10.1063/1.4934334

Аннотация: The two-dimensional time-dependent Navier-Stokes equations are considered for a viscous incompressible fluid in a channel. On the outlet boundary, the modified "do nothing" condition is imposed. To construct a discrete analogue, a semi-Lagrangian approximation of the transport derivatives is used in combination with the conforming finite element method for the approximation of other terms. The velocity components are approximated by biquadratic elements and the pressure is approximated by bilinear elements on rectangles. As a result of this combined approximation, the stationary problem with a self-adjoint operator is obtained at each time level. The theoretical results are confirmed by numerical experiments.

Ссылки на полный текст

Издание

Журнал: APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'15)

Выпуск журнала: Vol. 1684

ISSN журнала: 0094243X

Место издания: MELVILLE

Издатель: AMER INST PHYSICS

Авторы

  • Dementyeva E. (SB RAS, Inst Computat Modeling, Krasnoyarsk 660036, Russia)
  • Karepova E. (SB RAS, Inst Computat Modeling, Krasnoyarsk 660036, Russia; Siberian Fed Univ, Krasnoyarsk 660041, Russia)
  • Shaidurov V. (SB RAS, Inst Computat Modeling, Krasnoyarsk 660036, Russia; Siberian Fed Univ, Krasnoyarsk 660041, Russia)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.