Lung Boundary Detection and Classification in Chest X-Rays Images Based on Neural Network

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: 1st International Conference on Applied Computing Research to Support Industry: Innovation and Technology, ACRIT 2019

Год издания: 2020

Идентификатор DOI: 10.1007/978-3-030-38752-5_1

Ключевые слова: Balance Contrast Enhancement Technique, Chest X-ray imaging, Classification, Gray level co-occurrence matrix, Lung boundary detection, Probabilistic neural network

Аннотация: The isolation of different structures is often performed on chest radiography (CXR) and the classification of abnormalities is an initial step in detection systems as computer-aided diagnosis (CAD). The shape and size of lungs may hold clues to serious diseases such as pneumothorax, pneumoconiosis and even emphysema. More than 500,000 people die in the United States every year due to heart and lung failure, often being tested for the normal CXR film. With an increasing number of patients, the doctors must over-work, hence they cannot provide the advice and take care of their patients correctly. In this case, the computer system that supports image classification and boundary CXR detection is needed. This paper presents our automated approach for lung boundary detection and CXR classification in conventional poster anterior chest radiographs. We first extract the lung region, size measurements, and shape irregularities using segmentation techniques that are used in image processing on chest radiographs. For the CXR image, we extract 18 various features using the gray level co-occurrence matrix (GLCM) which enables the CXR to be classified as normal or abnormal using the probabilistic neural network (PNN) classifier. We measure the performance of our system using two data sets: the Montgomery County (MC) x-ray dataset and the Shenzhen X-ray dataset. The proposed methodology has competitive results with relatively shorter training time and higher accuracy. © 2020, Springer Nature Switzerland AG.

Ссылки на полный текст

Издание

Журнал: Communications in Computer and Information Science

Выпуск журнала: Vol. 1174 CCIS

Номера страниц: 3-16

ISSN журнала: 18650929

Издатель: Springer

Авторы

  • Hamad Y.A. (Siberian Federal University, Academician Kirensky, 1st Building, Krasnoyarsk, Krasnoyarsk Krai, 660074, Russian Federation, Department of Computer Science, Al-Maarif University College, Ramadi, Anbar, 31001, Iraq)
  • Simonov K. (Institute of Computational Modeling of the Siberian Branch of the Russian Academy of Sciences, Akademgorodok Krasnoyarsk, Krasnoyarsk Krai, 660036, Russian Federation, Department of Computer Science, Al-Maarif University College, Ramadi, Anbar, 31001, Iraq)
  • Naeem M.B. (Institute of Computational Modeling of the Siberian Branch of the Russian Academy of Sciences, Akademgorodok Krasnoyarsk, Krasnoyarsk Krai, 660036, Russian Federation, Department of Computer Science, Al-Maarif University College, Ramadi, Anbar, 31001, Iraq)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.