Parallel version n-dimensional fast fourier transform algorithm: Analog of the cooley-tukey algorithm

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: 5th International Workshop on Image Mining. Theory and Applications, IMTA-5 2015 - In conjunction with the 10th Internatioanal Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2015; Berlin, Germany; Berlin, Germany

Год издания: 2015

Ключевые слова: Cooley-tukey FFT, Multi-dimensional discrete Fourier transform, Parallel algorithm, Computer graphics, Computer vision, Discrete Fourier transforms, Fast Fourier transforms, One dimensional, Parallel algorithms, Complex operations, Cooley-Tukey, Cooley-Tukey FFT, Fast Fourier transform algorithm, Large amounts, Multi dimensional, Parallel version, Algorithms

Аннотация: One-, two- and three-dimensional fast Fourier transform (FFT) algorithms has been widely used in digital processing. Multi-dimensional discrete Fourier transform is reduced to a combination of one-dimensional FFT for all coordinates due to the increased complexity and the large amount of computation by increasing the dimensional of the signal. This article provides a general Cooley-Tukey algorithm analog, which requires less complex operations of additional and multiplication than the standard method, and runs 1.5 times faster than analogue in Matlab.

Ссылки на полный текст

Издание

Журнал: Proceedings of IMTA-5

Номера страниц: 114-117

Авторы

  • Noskov M.V. (Institute of Space and Information Technology, Siberian Federal University, Kirenskogo Street 26, Krasnoyarsk, Russian Federation)
  • Tutatchikov V.S. (Institute of Space and Information Technology, Siberian Federal University, Kirenskogo Street 26, Krasnoyarsk, Russian Federation)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.