2.5D magnetohydrodynamic simulation of the Kelvin-Helmholtz instability around Venus-Comparison of the influence of gravity and density increase

Тип публикации: статья из журнала

Год издания: 2012

Идентификатор DOI: 10.1063/1.3682039

Ключевые слова: Density profile, High density, Ideal magnetohydrodynamics, Kelvin-helmholtz instabilities, Magnetohydrodynamic simulations, Mass densities, Numerical studies, Plasma configuration, Source terms, Stabilizing effects, Total variation diminishing, Boundary layers, Magnetohydrodynamics, Magnetoplasma

Аннотация: We present a numerical study of the 2.5D Kelvin-Helmholtz instability and its vortices, where an initial plasma configuration appropriate for the situation around unmagnetized planets is assumed. We solve the set of ideal magnetohydrodynamic equations numerically with the total variation diminishing Lax-Friedrichs algorithm. Our density profile is such that the mass density increases toward the planet. A high density leads to smaller growth rates of the instability and, thus, has a stabilizing effect for the boundary layer. Moreover, we include source terms in the equations, enabling us to study the influence of gravity. Our results show that gravity affects the evolution of the Kelvin-Helmholtz instability. However, the effect is not very significant. We thus conclude that the density increase toward the planet stabilizes the boundary layer around Venus more than gravity does. (C) 2012 American Institute of Physics. [doi :10.1063/1.3682039]

Ссылки на полный текст

Издание

Журнал: PHYSICS OF PLASMAS

Выпуск журнала: Vol. 19, Is. 2

ISSN журнала: 1070664X

Место издания: MELVILLE

Издатель: AMER INST PHYSICS

Авторы

  • Zellinger M. (Institute of Physics,Karl-Franzens-University Graz)
  • Mostl U.V. (Institute of Physics,Karl-Franzens-University Graz)
  • Biernat H.K. (Institute of Physics,Karl-Franzens-University Graz)
  • Erkaev N.V. (Institute of Computational Modelling SB RAS)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.