DOUBLE GRADIENT INSTABILITY IN A COMPRESSIBLE PLASMA CURRENT SHEET : материалы временных коллективов

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: International Conference on Problems of Geocosmos; St Petersburg, RUSSIA; St Petersburg, RUSSIA

Год издания: 2010

Аннотация: A linear MHD instability is investigated of the electric current sheet characterized by a small normal magnetic field component B-z varying along the sheet. The tangential magnetic field component, B-x, is modeled by a hyperbolic function describing Harris-like variations of the field across the sheet. This work is an extended numerical study of the so called "double gradient instability" which was analyzed previously in the framework of the simplified analytical approach for an incompressible plasma. For this problem, formulated in 3D domain, the conventional compressible ideal MHD equations are applied. By assuming Fourier harmonics along the electric current, the linearized 3D equations have been reduced to 2D ones. A finite difference numerical scheme is applied to examine the time evolution of small initial perturbations of the equilibrium background. Finally, dispersion curve is obtained for the kink-like mode of the instability. It is shown that this curve demonstrates a quantitative agreement with the previous theoretical results, obtained in the frame of a 1D incompressible model. The dependence of the instability growth rates on the magnetic gradient partial derivative B-z/partial derivative x is examined, demonstrating a good agreement with the theoretical predictions. However, the numerical growth rates are somewhat less than the analytical ones by a factor depending, probably, on a ratio of the acoustic and Alfven speeds. This dependence is a subject of our future study.

Ссылки на полный текст

Издание

Журнал: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE PROBLEMS OF GEOCOSMOS

Номера страниц: 132-136

Место издания: ST PETERSBURG

Издатель: ST PETERSBURG STATE UNIV, FAC PHYSICS

Авторы

  • Korovinskiy D.B. (Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria)
  • Biernat H.K. (Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria; Graz Univ, Inst Phys, A-8010 Graz, Austria)
  • Erkaev N.V. (Russian Acad Sci, Inst Computat Modeling, Siberian Branch, Krasnoyarsk 660036, Russia; Siberian Fed Univ, Krasnoyarsk 660041, Russia)
  • Semenov V.S. (St Petersburg State Univ, St Petersburg 198504, Russia)
  • Ivanova V.V. (Orel State Tech Univ, Oryol 302020, Russia)
  • Ivanov I.B. (Petersburg Nucl Phys Inst, Theoret Phys Div, Gatchina 188300, Leningrad Regio, Russia)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.