The semi-Lagrangian method for the Navier-Stokes problem for an incompressible fluid

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: ??9th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS'17; Albena, Bulgaria; Albena, Bulgaria

Год издания: 2017

Идентификатор DOI: 10.1063/1.5007407

Аннотация: The two-dimensional time-dependent Navier-Stokes equations are considered for a viscous incompressible fluid in a channel. On the outlet boundary, the modified “do nothing” condition is imposed. To construct a discrete analogue, we use the conforming finite element method in the combination with a semi-Lagrangian approach. The velocity components are approximated by biquadratic elements and the pressure is approximated by bilinear elements on rectangles. To overcome the lack of conservation law of the classical semi-Lagrangian method, we propose its conservative version. To guarantee the energy conservation and the stability in the mean-square norm, we use the discrete analogue of the local integral balance between two neighboring time levels. A numerical experiment shows the convergence of the proposed numerical method.

Ссылки на полный текст

Издание

Журнал: AIP CONFERENCE PROCEEDINGS

Выпуск журнала: 1895

Номера страниц: 110001-110001

Издатель: American Institute of Physics Inc.

Авторы

  • Dementyeva E. (Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science)
  • Karepova E. (Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science)
  • Shaidurov V. (Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.