Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.)

Тип публикации: статья из журнала

Год издания: 2016

Идентификатор DOI: 10.1186/s12864-016-3081-8

Ключевые слова: Loblolly pine, Exome sequence capture, Target enrichment, Genotyping by sequencing, Linkage disequilibrium, Population structure, SNPs, Exome sequence capture, Genotyping by sequencing, Linkage disequilibrium, Loblolly pine, Population structure, SNPs, Target enrichment

Аннотация: Background: Loblolly pine (Pinus taeda L.) is one of the most widely planted and commercially important forest tree species in the USA and worldwide, and is an object of intense genomic research. However, whole genome resequencing in loblolly pine is hampered by its large size and complexity and a lack of a good reference. As a valid and more feasible alternative, entire exome sequencing was hence employed to identify the gene-associated single nucleotide polymorphisms (SNPs) and to genotype the sampled trees. Results: The exons were captured in the ADEPT2 association mapping population of 375 clonally-propagated loblolly pine trees using NimbleGen oligonucleotide hybridization probes, and then exome-enriched genomic DNA fragments were sequenced using the Illumina HiSeq 2500 platform. Oligonucleotide probes were designed based on 199,723 exons (approximate to 49 Mbp) partitioned from the loblolly pine reference genome (PineRefSeq v. 1.01). The probes covered 90.2 % of the target regions. Capture efficiency was high; on average, 67 % of the sequence reads generated for each tree could be mapped to the capture target regions, and more than 70 % of the captured target bases had at least 10X sequencing depth per tree. A total of 972,720 high quality SNPs were identified after filtering. Among them, 53 % were located in coding regions (CDS), 5 % in 5' or 3' untranslated regions (UTRs) and 42 % in non-target and non-coding regions, such as introns and adjacent intergenic regions collaterally captured. We found that linkage disequilibrium (LD) decayed very rapidly, with the correlation coefficient (r(2)) between pairs of SNPs linked within single scaffolds decaying to half maximum (r(2) = 0.22) within 55 bp, to r(2) = 0.1 within 192 bp, and to r(2) = 0.05 within 451 bp. Population structure analysis using unlinked SNPs demonstrated the presence of two main distinct clusters representing western and eastern parts of the loblolly pine range included in our sample of trees. Conclusions: The obtained results demonstrated the efficiency of exome capture for genotyping species such as loblolly pine with a large and complex genome. The highly diverse genetic variation reported in this study will be a valuable resource for future genetic and genomic research in loblolly pine.

Ссылки на полный текст

Издание

Журнал: BMC GENOMICS

Выпуск журнала: Vol. 17

ISSN журнала: 14712164

Место издания: LONDON

Издатель: BIOMED CENTRAL LTD

Авторы

  • Lu Mengmeng (Texas A&M Univ, Dept Ecosyst Sci & Management, 2138 TAMU, College Stn, TX 77843 USA; Texas A&M Univ, Mol & Environm Plant Sci Program, 2474 TAMU, College Stn, TX 77843 USA)
  • Krutovsky Konstantin V. (Texas A&M Univ, Dept Ecosyst Sci & Management, 2138 TAMU, College Stn, TX 77843 USA; Texas A&M Univ, Mol & Environm Plant Sci Program, 2474 TAMU, College Stn, TX 77843 USA; Georg August Univ Gottingen, Dept Forest Genet & Forest Tree Breeding, D-37077 Gottingen, Germany; Russian Acad Sci, NI Vavilov Inst Gen Genet, Gubkina Str, Moscow 119333, Russia)
  • Nelson C.D. (USDA Forest Serv, Southern Res Stn, Southern Inst Forest Genet, 23332 Success Rd, Saucier, MS 39574 USA; Univ Kentucky, Forest Hlth Res & Educ Ctr, 730 Rose St, Lexington, KY 40546 USA)
  • Koralewski Tomasz E. (Texas A&M Univ, Dept Ecosyst Sci & Management, 2138 TAMU, College Stn, TX 77843 USA)
  • Byram Thomas D. (Texas A&M Univ, Dept Ecosyst Sci & Management, 2138 TAMU, College Stn, TX 77843 USA; Texas A&M Forest Serv, 2585 TAMU, College Stn, TX 77843 USA)
  • Loopstra Carol A. (Texas A&M Univ, Dept Ecosyst Sci & Management, 2138 TAMU, College Stn, TX 77843 USA; Texas A&M Univ, Mol & Environm Plant Sci Program, 2474 TAMU, College Stn, TX 77843 USA)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.