Properties of Solutions for the Problem of a Joint Slow Motion of a Liquid and a Binary Mixture in a Two-Dimensional Channel

Тип публикации: статья из журнала

Год издания: 2018

Идентификатор DOI: 10.1134/S1990478918030018

Ключевые слова: a priori estimates, asymptotic behavior, conjugate problem, inverse problem, surface tension, thermocapillarity

Аннотация: Under study is a conjugate boundary value problemdescribing a joint motion of a binary mixture and a viscous heat-conducting liquid in a two-dimensional channel, where the horizontal component of the velocity vector depends linearly on one of the coordinates. The problemis nonlinear and inverse because the systems of equations contain the unknown time functions—the pressure gradients in the layers. In the case of small Marangoni numbers (the so-called creeping flow) the problem becomes linear. For its solutions the two different integral identities are valid which allow us to obtain a priori estimates of the solution in the uniform metric. It is proved that if the temperature on the channel walls stabilizes with time then, as time increases, the solution of the nonstationary problem tends to a stationary solution by an exponential law. © 2018, Pleiades Publishing, Ltd.

Ссылки на полный текст

Издание

Журнал: Journal of Applied and Industrial Mathematics

Выпуск журнала: Vol. 12, Is. 3

Номера страниц: 395-408

ISSN журнала: 19904789

Издатель: Pleiades Publishing

Авторы

  • Andreev V.K. (Institute of Computational Modeling, Akademgorodok 50/44, Krasnoyarsk, 660036, Russian Federation, Siberian Federal University, pr. Svobodnyi 79, Krasnoyarsk, 660036, Russian Federation)
  • Efimova M.V. (Institute of Computational Modeling, Akademgorodok 50/44, Krasnoyarsk, 660036, Russian Federation, Siberian Federal University, pr. Svobodnyi 79, Krasnoyarsk, 660036, Russian Federation)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.