Maximally reducible monodromy of bivariate hypergeometric systems

Тип публикации: статья из журнала

Год издания: 2016

Идентификатор DOI: 10.1070/IM8211

Ключевые слова: hypergeometric system of equations, monodromy representation, monodromy reducibility, intertwining operator, Hypergeometric system of equations, Intertwining operator, Monodromy reducibility, Monodromy representation

Аннотация: We investigate the branching of solutions of holonomic bivariate Horn-type hypergeometric systems. Special attention is paid to invariant subspaces of Puiseux polynomial solutions. We mainly study Horn systems defined by simplicial configurations and Horn systems whose Ore-Sato polygons are either zonotopes or Minkowski sums of a triangle and segments proportional to its sides. We prove a necessary and sufficient condition for the monodromy representation to be maximally reducible, that is, for the space of holomorphic solutions to split into a direct sum of one-dimensional invariant subspaces.

Ссылки на полный текст

Издание

Журнал: IZVESTIYA MATHEMATICS

Выпуск журнала: Vol. 80, Is. 1

Номера страниц: 221-262

ISSN журнала: 10645632

Место издания: BRISTOL

Издатель: TURPION LTD

Авторы

  • Sadykov T.M. (Department of Mathematics and Computer Science,Plekhanov Russian University of Economics)
  • Tanabe S. (Department of Mathematics,Galatasaray University)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.