Mobile robot motion estimation using Hough transform | Научно-инновационный портал СФУ

Mobile robot motion estimation using Hough transform

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: International Conference on Information Technologies in Business and Industry; Tomsk Polytechn Univ, Tomsk, RUSSIA; Tomsk Polytechn Univ, Tomsk, RUSSIA

Год издания: 2018

Идентификатор DOI: 10.1088/1742-6596/1015/3/032161

Аннотация: This paper proposes an algorithm for estimation of mobile robot motion. The geometry of surrounding space is described with range scans (samples of distance measurements) taken by the mobile robot's range sensors. A similar sample of space geometry in any arbitrary preceding moment of time or the environment map can be used as a reference. The suggested algorithm is invariant to isotropic scaling of samples or map that allows using samples measured in different units and maps made at different scales. The algorithm is based on Hough transform: it maps from measurement space to a straight-line parameters space. In the straight-line parameters, space the problems of estimating rotation, scaling and translation are solved separately breaking down a problem of estimating mobile robot localization into three smaller independent problems. The specific feature of the algorithm presented is its robustness to noise and outliers inherited from Hough transform. The prototype of the system of mobile robot orientation is described. © Published under licence by IOP Publishing Ltd.

Ссылки на полный текст


Журнал: Journal of Physics: Conference Series

Выпуск журнала: Vol. 1015, Is. 3

Номера страниц: 32161

ISSN журнала: 17426588

Издатель: Institute of Physics Publishing


  • Aldoshkin D.N. (Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia)
  • Yamskikh T.N. (Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia)
  • Tsarev R.Yu (Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia)

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.