О РАЗРЕШИМОСТИ ПРОИЗВОЛЬНОЙ ФОРМАЛЬНОЙ ГРАММАТИКИ : доклад, тезисы доклада

Перевод названия: ON SOLVABILITY OF ARBITRARY FORMAL GRAMMAR

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: VIII ВСЕРОССИЙСКАЯ С МЕЖДУНАРОДНЫМ УЧАСТИЕМ НАУЧНО-МЕТОДИЧЕСКАЯ КОНФЕРЕНЦИЯ, ПОСВЯЩЕННАЯ 80-ЛЕТИЮ ПРОФЕССОРА ЛАРИНА СЕРГЕЯ ВАСИЛЬЕВИЧА «ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В МАТЕМАТИКЕ И МАТЕМАТИЧЕСКОМ ОБРАЗОВАНИИ» В РАМКАХ VIII МЕЖДУНАРОДНОГО НАУЧНО-ОБРАЗОВАТЕЛЬНОГО ФОРУМА «ЧЕЛОВЕК, СЕМЬЯ И ОБЩЕСТВО: ИСТОРИЯ И ПЕРСПЕКТИВЫ РАЗВИТИЯ»; Красноярск; Красноярск

Год издания: 2019

Ключевые слова: systems of polynomial equations, non-commutative variables, formal power series, commutative image, Jacobian, condition of solvability, Cистемы полиномиальных уравнений, некоммутативные переменные, формальный степенной ряд, коммутативный образ, матрица Якоби, условие разрешимости

Аннотация: В работе дается условие разрешимости систем некоммутативных полиномиальных уравнений, которые интерпретируются как грамматики формальных языков. Эти системы решаются в виде формальных степенных рядов (ФСР), выражающих нетерминальные символы через терминальные символы алфавита и рассматриваемых как формальные языки. Всякому ФСР поставлен в соответствие его коммутативный образ, который получается в предположении, что все символы обозначают коммутативные переменные, принимающие значения из поля комплексных чисел. Доказано, что если для коммутативного образа системы ранг матрицы Якоби коммутативного образа системы уравнений в начале координат максимален, то исходная система некоммутативных уравнений имеет единственное решение в виде ФСР.

Ссылки на полный текст

Издание

Журнал: ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В МАТЕМАТИКЕ И МАТЕМАТИЧЕСКОМ ОБРАЗОВАНИИ

Выпуск журнала: Часть 1

Номера страниц: 25-27

Издатель: Красноярский государственный педагогический университет им. В.П. Астафьева

Авторы

  • Колбасина И.В. (Сибирский государственный университет науки и технологий им. акад. М.Ф. Решетнева)
  • Егорушкин О.И. (Сибирский государственный университет науки и технологий им. акад. М.Ф. Решетнева)
  • Сафонов К.В. (Сибирский государственный университет науки и технологий им. акад. М.Ф. Решетнева)
  • Цокин А.В. (Сибирский государственный университет науки и технологий им. акад. М.Ф. Решетнева)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.