BIG DATA RANKING SYSTEM AS AN EFFECTIVE METHOD OF VISUALIZING THE QUALITY OF URBAN STRUCTURAL UNITS

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: International Seminar on Urban Form 2018: Urban Form and Social Context: from traditions to newest demands; Красноярск; Красноярск

Год издания: 2019

Ключевые слова: Big Data, cartography data, ranking systems, urban environment quality

Аннотация: Big data is the basis for new technological changes. Constantly growing volumes of arrays greatly complicate data processing and understanding. Big data analysis extracts knowledge and meaningful information from large and complex data sets. The extraction of information displays regularities hidden in the data. Modern cities use the latest technologies to support sustainable development and a high standard of living. The indicator of a high standard of living of the urban population and, consequently, an indicator of a quality city is the quality of the urban environment. To evaluate the structural units of a city, the most common method is ranking. Ranking systems based on big data are the most effective method of visualizing the quality of structural elements of a city. Innovative ways of collecting and analyzing data are gradually replacing obsolete mechanisms of city management. Unlike statistical data, which are out of date by the time of their analysis, big data can be processed in real time that increases the quality and speed of decision making. The complexity of big data methods implementing in ranking systems is caused by problems of staff shortages, technical equipment, legal rights, security problems and openness of data. Ranking quality systems of the urban environment can be used by the city administration, designers, civil communities to assess the current state and management of the urban environment. The creation of such ranking systems is the first step towards the formation of smart open data-driven cities. The introduction of big data into cities can be divided into three levels as the influence of data on urban governance increases: applied (open data city); semi-autonomous (data-driven city); autonomous (smart city).

Ссылки на полный текст

Издание

Журнал: Urban Form and Social Context: from traditions to newest demands

Номера страниц: 473-480

Издатель: Сибирский федеральный университет

Авторы

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.