Application of Evolutionary Rietveld Method Based XRD Phase Analysis and a Self-Configuring Genetic Algorithm to the Inspection of Electrolyte Composition in Aluminum

Тип публикации: статья из журнала

Год издания: 2018

Ключевые слова: x-ray powder diffraction, rietveld method, quantitative XRD phase analysis, aluminum electrolyte, cryolite ratio, genetic algorithms, self-configuration

Аннотация: The technological inspection of the electrolyte composition in aluminum production is performed using calibration X-ray quantitative phase analysis (QPA). For this purpose, the use of QPA by the Rietveld method, which does not require the creation of multiphase reference samples and is able to take into account the actual structure of the phases in the samples, could be promising. However, its limitations are in its low automation and in the problem of setting the correct initial values of profile and structural parameters. A possible solution to this problem is the application of the genetic algorithm we proposed earlier for finding suitable initial parameter values individually for each sample. However, the genetic algorithm also needs tuning. A self-configuring genetic algorithm that does not require tuning and provides a fully automatic analysis of the electrolyte composition by the Rietveld method was proposed, and successful testing results were presented.

Ссылки на полный текст

Издание

Журнал: Crystals

Выпуск журнала: Т.8, 11

Номера страниц: 402

ISSN журнала: 20734352

Издатель: MDPI AG

Авторы

  • Yakimov Igor (Siberian Federal University)
  • Zaloga Aleksandr (Siberian Federal University)
  • Dubinin P.S. (Siberian Federal University)
  • Bezrukovа Oksana (Siberian Federal University)
  • Samoilo Aleksandr (Siberian Federal University)
  • Burakov Sergey (Reshetnev Siberian State University of Science and Technology)
  • Semenkin Eugene (Reshetnev Siberian State University of Science and Technology)
  • Semenkina Maria (Reshetnev Siberian State University of Science and Technology)
  • Andruschenko Eugene (Siberian Federal University)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.