Toward a theory of the propagation of elastoplastic waves in strain-hardening media

Тип публикации: статья из журнала

Год издания: 1994

Идентификатор DOI: 10.1007/BF02369563

Аннотация: A model of elastoplastic flow with isotropic and translational strain-hardening expressed as a variational inequality is constructed to obtain an integral generalization that makes it possible to study the class of discontinuous solutions. Generalized solutions corresponding to different types of strain-hardening are compared for the problem of the propagation of plane shear waves.Mandel [1] was the furst to examine the construction of generalized solutions in dynamic problems of the Prandtl-Reuss theory of elastoplastic flow, but he mistakenly concluded that velocity and stress discontinuity fronts cannot be described unambiguously in this theory. A complete system of relations for strong discontinuities was obtained in [2] on the basis of considerations pertaining to maximum plastic energy dissipation on a front in a model of linear isotropic and translational strain-hardening. It was shown in [3] that the system of quasilinear Prandtl-Reuss equations corresponding to the elastic- ideally-plastic model cannot be reduced to divergent form. It is thus impossible to generalize it in the form of a complete system of integral conservation laws and construct discontinuous solutions — as is possible for models of ideal media [4]. In the present study, we pi'opose an integral formulation that is equivalent to the initial equations of flow theory for an arbitrary strain-hardening curve. We then make use of this formulation to write relations for strongly discontinuous solutions, without resort to any additional considerations.

Ссылки на полный текст

Издание

Журнал: Journal of Applied Mechanics and Technical Physics

Выпуск журнала: Т.35, 5

Номера страниц: 798-804

ISSN журнала: 00218944

Место издания: Новосибирск

Издатель: Pleiades Publishing, Ltd. (Плеадес Паблишинг, Лтд)

Авторы

Вхождение в базы данных

  • eLIBRARY.RU (цитирований 1)
  • Web of Science
  • Scopus

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.