Mathematical and numerical modelling of porous geomaterials based on generalized rheological approach

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: 9th Australasian Congress on Applied Mechanics, ACAM 2017; Sydney, NSW; Sydney, NSW

Год издания: 2017

Аннотация: Traditional rheological method is supplemented by a new element called rigid contact, which serves to take into account different resistance of materials to tension and compression. Based on this method, mathematical model describing deformation of a porous medium is constructed, which takes into account change in the resistance to external mechanical impact at a moment of collapse of pores. Parallel computational algorithm is developed for the analysis of dynamics of porous materials, accompanied by plastic deformation of skeleton and collapse of pores. This algorithm is tested on supercomputers in the problems about propagation of plane longitudinal compression shock waves and the expansion of cylindrical cavity in an infinite porous medium. The solutions of these problems are obtained in closed form in the framework of the suggested mathematical model. It is shown that, depending on the porosity of the medium and the value of the yield point, the instantaneous loading of a half-space with constant pressure leads to the formation of one or two shock waves – an elastic longitudinal wave, a plastic wave or waves of elastic or plastic compaction. Critical pressures of limit states and radii of interfaces between characteristic zones of plasticity and compaction are calculated numerically in the problem of radial expansion of cavity with sufficiently high precision.

Ссылки на полный текст

Издание

Журнал: 9th Australasian Congress on Applied Mechanics, ACAM 2017

Выпуск журнала: 2017-November

Авторы

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.