Low-temperature spin dynamics in the TmFeO3 orthoferrite with a non-Kramers ion

Тип публикации: статья из журнала

Год издания: 2020

Идентификатор DOI: 10.1103/PhysRevB.101.014432

Аннотация: We investigate the magnetic dynamics of the orthorhombic perovskite TmFeO3 at low temperatures, below the spin reorientation transition at TSR≈80 K, by means of time-of-flight neutron spectroscopy. We find that the magnetic excitation spectrum combines two emergent collective modes associated with different magnetic sublattices. The Fe subsystem orders below TN∼632 K into a canted antiferromagnetic structure and exhibits sharp, high-energy magnon excitations. We describe them using linear spin-wave theory, and reveal a pronounced anisotropy between in- and out-of-plane exchange interactions, which was mainly neglected in previous reports on the spin dynamics in orthoferrites. At lower energies, we find two crystalline electrical field (CEF) excitations of Tm3+ ions at energies of ∼2 and 5 meV. In contrast to the sister compound YbFeO3, where the Yb3+ ions form quasi-one-dimensional chains along the c axis, the Tm excitations show dispersion along both directions in the (0KL) scattering plane. Analysis of the neutron scattering polarization factor reveals a longitudinal polarization of the 2 meV excitation. To evaluate the effect of the CEF on the Tm3+ ions, we perform point-charge model calculations, and their results quantitatively capture the main features of Tm single-ion physics, such as energies, intensities, and polarization of the CEF transitions, and the type of magnetic anisotropy. © 2020 American Physical Society.

Ссылки на полный текст

Издание

Журнал: Physical Review B

Выпуск журнала: Vol. 101, Is. 1

Номера страниц: 14432

ISSN журнала: 24699950

Издатель: American Physical Society

Авторы

  • Skorobogatov S.A. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation, Department of Solid State Physics and Nanotechnology, Institute of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation)
  • Nikitin S.E. (Max Planck Institute for Chemical Physics of Solids, Dresden, D-01187, Germany, Institut für Festkörper- und Materialphysik, Technische Universität Dresden, Dresden, D-01069, Germany)
  • Shaykhutdinov K.A. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation)
  • Balaev A.D. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation)
  • Terentjev K.Yu. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation)
  • Ehlers G. (Neutron Technologies Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States)
  • Sala G. (Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States)
  • Pomjakushina E.V. (Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut, Villigen PSI, CH-5232, Switzerland)
  • Conder K. (Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut, Villigen PSI, CH-5232, Switzerland)
  • Podlesnyak A. (Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.