Logic of discovery and knowledge: Decision algorithm

Тип публикации: статья из журнала (материалы конференций, опубликованные в журналах)

Год издания: 2008

Идентификатор DOI: 10.1007/978-3-540-85565-1-88

Ключевые слова: Chance discovery, Decidability, Inference rules, Kripke-Hintikka models, Modal logic, Rules in normal reduced form, Communication channels (information theory), Computability and decidability, Functions, Information theory, Knowledge based systems, Knowledge engineering, Mathematical operators, Models, Recursive functions, Chance discovery, Decidability, Inference rules, Kripke-Hintikka models, Modal logic, Rules in normal reduced form, Mathematical models

Аннотация: The logic of Chance Discovery (CD) as well as mathematical models for CD, by the very nature of the term chance, are hard to formalize, which poses challenging problems for mathematization of the area. It does not completely prevent us though from studying the logical laws which chance discovery and related notions should abide, especially in a carefully chosen and reasonably expressive mathematical formalism. The framework, the authors suggest in this paper, is based on a well-developed area of modal logic, more precisely on Kripke-Hintikka semantics, with a notable distinction: unlike some other hybridization schemes, it leads to decidable logics, while still preserving high expressive power. We demonstrate our approach by an example of the Logic of Discovery and Knowledge, where a regular modal language is augmented with higher level operators intended to model some contrasting aspects of Chance Discovery: uncertain necessity of discovery and local common knowledge within contexts admitting branching time. © 2008 Springer-Verlag Berlin Heidelberg.

Ссылки на полный текст

Издание

Журнал: (3 September 2008 through 5 September 2008, Zagreb

Выпуск журнала: Vol. 5178 LNAI, Is. PART 2

Номера страниц: 711-718

Авторы

  • Babenyshev S. (Institute of Mathematics,Siberian Federal University)
  • Rybakov V. (Institute of Mathematics,Siberian Federal University)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.