Production scheduling with ant colony optimization

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: International Conference on Innovations and Prospects of Development of Mining Machinery and Electrical Engineering 2017, IPDME 2017

Год издания: 2017

Идентификатор DOI: 10.1088/1755-1315/87/6/062002

Аннотация: The optimum solution of the production scheduling problem for manufacturing processes at an enterprise is crucial as it allows one to obtain the required amount of production within a specified time frame. Optimum production schedule can be found using a variety of optimization algorithms or scheduling algorithms. Ant colony optimization is one of well-known techniques to solve the global multi-objective optimization problem. In the article, the authors present a solution of the production scheduling problem by means of an ant colony optimization algorithm. A case study of the algorithm efficiency estimated against some others production scheduling algorithms is presented. Advantages of the ant colony optimization algorithm and its beneficial effect on the manufacturing process are provided. © Published under licence by IOP Publishing Ltd.

Ссылки на полный текст

Издание

Журнал: IOP Conference Series: Earth and Environmental Science

Выпуск журнала: Vol. 87, Is. 6

ISSN журнала: 17551307

Издатель: Institute of Physics Publishing

Авторы

  • Chernigovskiy A.S. (Siberian Federal University, 79, Svobodny Prospect, Krasnoyarsk, Russian Federation)
  • Kapulin D.V. (Siberian Federal University, 79, Svobodny Prospect, Krasnoyarsk, Russian Federation)
  • Noskova E.E. (Siberian Federal University, 79, Svobodny Prospect, Krasnoyarsk, Russian Federation)
  • Yamskikh T.N. (Siberian Federal University, 79, Svobodny Prospect, Krasnoyarsk, Russian Federation)
  • Tsarev R.Y. (Siberian Federal University, 79, Svobodny Prospect, Krasnoyarsk, Russian Federation)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.