INTERMEDIATE LOGICS PRESERVING ADMISSIBLE INFERENCE RULES OF HEYTING CALCULUS

Тип публикации: статья из журнала

Год издания: 1993

Идентификатор DOI: 10.1002/malq.19930390144

Ключевые слова: INTERMEDIATE LOGIC, ADMISSIBLE INFERENCE RULE, HEYTINGS CALCULUS, TABULAR LOGIC, INTUITIONISTIC PROPOSITIONAL LOGIC, MODAL LOGIC, FINITE MODEL PROPERTY, KRIPKE MODEL

Аннотация: The aim of this paper is to look from the point of view of admissibility of inference rules at intermediate logics having the finite model property which extend Heyting's intuitionistic propositional logic H. A semantic description for logics with the finite model property preserving all admissible inference rules for H is given. It is shown that there are continuously many logics of this kind. Three special tabular intermediate logics lambda(i), 1 less-than-or-equal-to i less-than-or-equal-to 3, are given which describe all tabular logics preserving admissibility: a tabular logic A preserves all admissible rules for H iff lambda has width not more than 2 and is not included in each lambda(i).

Ссылки на полный текст

Издание

Журнал: MATHEMATICAL LOGIC QUARTERLY

Выпуск журнала: Vol. 39, Is. 3

Номера страниц: 403-415

ISSN журнала: 09425616

Место издания: HEIDELBERG

Издатель: JOHANN AMBROSIUS BARTH VERLAG

Авторы

  • RYBAKOV V.V. (KRASNOYARSK UNIV,DEPT MATH,KRASNOYARSK 660062,RUSSIA)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.