Ab initio and empirical modeling of lithium atoms penetration into silicon

Тип публикации: статья из журнала

Год издания: 2015

Идентификатор DOI: 10.1016/j.commatsci.2015.06.024

Ключевые слова: Li-ion batteries, Silicon, Surface diffusion, Li diffusion, Density functional theory, Molecular dynamics, Density functional theory, Li diffusion, Li-ion batteries, Molecular dynamics, Silicon, Surface diffusion, Atoms, Calculations, Chemical bonds, Density functional theory, Diffusion, Dimers, Lithium alloys, Lithium-ion batteries, Molecular dynamics, Silicon, Surface diffusion, Ab initio calculations, Bonding energies, Interatomic potential, Li diffusion, Li-ion batteries, Lithium diffusion, Migration barriers, Tetrahedral interstices, Lithium

Аннотация: A process of lithium atoms penetration into silicon (100) subsurface layers was investigated with the help of DFT method. It was shown that, while the concentration of lithium adatoms on reconstructed (100) silicon surface is low, the bonding energy of lithium atoms in the subsurface layers is smaller than the bonding energy on the surface, so lithium atoms are unlikely to migrate into the crystal. When the (100) silicon surface is covered by 2 layers of lithium, migration into the subsurface layer becomes favorable. In addition to this, the reconstruction of the surface changes to the form with symmetric dimers as the concentration increases. Thus, all possible lithium migration paths become energy-wise equal, so the rate of lithium atom transfer into silicon crystal rises. In addition to the ab initio calculations, an ad-hoc empirical interatomic potential was developed and the kinetics of lithium diffusion into silicon were studied. It was shown that lithium penetration proceeds in a layer-by-layer way with a sharp border between undoped and lithiated silicon. This is accounted for the fact that, once a tetrahedral interstice is occupied by a lithium atom, the migration barriers between the adjacent interstices become lower and the rate of diffusion increases. (C) 2015 Elsevier B.V. All rights reserved.

Ссылки на полный текст

Издание

Журнал: COMPUTATIONAL MATERIALS SCIENCE

Выпуск журнала: Vol. 109

Номера страниц: 76-83

ISSN журнала: 09270256

Место издания: AMSTERDAM

Издатель: ELSEVIER SCIENCE BV

Авторы

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.