Study of static and dynamic stability of flexible rods in a geometrically nonlinear statement

Тип публикации: статья из журнала

Год издания: 2017

Идентификатор DOI: 10.3103/S002565441704001X

Ключевые слова: dynamic stability, flexible rod, geometric nonlinearity, static stability

Аннотация: We study static and dynamic stability problems for a thin flexible rod subjected to axial compression with the geometric nonlinearity explicitly taken into account. In the case of static action of a force, the critical load and the bending shapes of the rod were determined by Euler. Lavrent’ev and Ishlinsky discovered that, in the case of rod dynamic loading significantly greater than the Euler static critical load, there arise buckling modes with a large number of waves in the longitudinal direction. Lavrent’ev and Ishlinsky referred to the first loading threshold discovered by Euler as the static threshold, and the subsequent ones were called dynamic thresholds; they can be attained under impact loading if the pulse growth time is less than the system relaxation time. Later, the buckling mechanism in this case and the arising parametric resonance were studied in detail by Academician Morozov and his colleagues. In this paper, we complete and develop the approach to studying dynamic rod systems suggested by Morozov; in particular, we construct exact and approximate analytic solutions by using a system of special functions generalizing the Jacobi elliptic functions. We obtain approximate analytic solutions of the nonlinear dynamic problem of flexible rod deformation under longitudinal loading with regard to the boundary conditions and show that the analytic solution of static rod system stability problems in a geometrically nonlinear statement permits exactly determining all possible shapes of the bent rod and the complete system of buckling thresholds. The study of approximate analytic solutions of dynamic problems of nonlinear vibrations of rod systems loaded by lumped forces after buckling in the deformed state allows one to determine the vibration frequencies and then the parametric resonance thresholds. © 2017, Allerton Press, Inc.

Ссылки на полный текст

Издание

Журнал: Mechanics of Solids

Выпуск журнала: Vol. 52, Is. 4

Номера страниц: 353-363

Издатель: Allerton Press Inc.

Авторы

  • Annin B.D. (Lavrent’ev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences, pr. akad. Lavrentyeva 15, Novosibirsk, Russian Federation)
  • Vlasov A.Y. (Siberian State Aerospace University, pr. im. gazety “Krasnoyarskiy rabochiy” 31, Krasnoyarsk, Russian Federation)
  • Zakharov Y.V. (Siberian State Aerospace University, pr. im. gazety “Krasnoyarskiy rabochiy” 31, Krasnoyarsk, Russian Federation)
  • Okhotkin K.G. (Academician M. F. Reshetnev Information Satellite Systems, ul. Lenina 52, Zheleznogorsk, Krasnoyarsk region, Russian Federation, Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences,”, ul. Akademgorodok 50, Krasnoyarsk, Russian Federation)

Вхождение в базы данных

  • Scopus (цитирований 2)

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.