MHD aspect of current sheet oscillations related to magnetic field gradients

Тип публикации: статья из журнала

Год издания: 2009

Идентификатор DOI: 10.5194/angeo-27-417-2009

Ключевые слова: Magnetospheric physics, Magnetotail, MHD waves and instabilities, Plasma sheet, electric field, Gaussian method, magnetic field, magnetosphere, oscillation, plasma, wave propagation, wave velocity

Аннотация: One-fluid ideal MHD model is applied for description of current sheet flapping disturbances appearing due to a gradient of the normal magnetic field component. The wave modes are studied which are associated to the flapping waves observed in the Earth's magnetotail current sheet. In a linear approximation, solutions are obtained for model profiles of the electric current and plasma densities across the current sheet, which are described by hyperbolic functions. The flapping eigenfrequency is found as a function of wave number. For the Earth's magnetotail conditions, the estimated wave group speed is of the order of a few tens kilometers per second. The current sheet can be stable or unstable in dependence on the direction of the gradient of the normal magnetic field component. The obtained dispersion function is used for calculation of the flapping wave disturbances, which are produced by the given initial Gaussian perturbation at the center of the current sheet and propagating towards the flanks. The propagating flapping pulse has a smooth leading front, and a small scale oscillating trailing front, because the short wave oscillations propagate much slower than the long wave ones.

Ссылки на полный текст



Выпуск журнала: Vol. 27, Is. 1

Номера страниц: 417-425

ISSN журнала: 09927689

Место издания: Gottingen

Издатель: Copernicus gesellschaft MBH


  • Erkaev N.V. (Siberian Federal University)
  • Semenov V.S. (St.Petersburg State University)
  • Kubyshkin I.V. (St.Petersburg State University)
  • Kubyshkina M.V. (St.Petersburg State University)
  • Biernat H.K. (Institute for Geophysics, Astrophysics, and Meteorology,University of Graz)

Вхождение в базы данных

Информация о публикациях загружается с сайта службы поддержки публикационной активности СФУ. Сообщите, если заметили неточности.

Вы можете отметить интересные фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.